AASHTO M 323 – STANDARD SPECIFICATION FOR SUPERPAVE VOLUMETRIC MIX DESIGN

- 1. Which of the following describes binder requirements?
 - a. Must be performance graded meeting the requirements of AASHTO M 320.
 - b. Must be appropriate for climate and traffic loading of the project for which it is intended.
 - c. Must meet the requirements of SP 1 published by the Asphalt Institute.
 - d. All of the above.
 - e. None of the above.
- 2. When RAP (Reclaimed Asphalt Pavement) is used in a Superpave mix design, which of the following best describes what must be done when selecting the virgin binder grade?
 - a. Select a binder one grade softer than normal when the RAP percentage is not greater than 15%.
 - b. Select a binder one grade stiffer than normal when the RAP percentage is between 15 and 25%.
 - c. Select a binder one grade softer than normal when the RAP percentage is greater than 25%.
 - d. None of the above.
- 3. Which of the following are gradation control points or sieves?
 - a. Maximum size.
 - b. Nominal maximum size.
 - c. One sieve smaller than nominal maximum size.
 - d. Primary control sieve.
 - e. b & c
 - f. All of the above.
 - g. Who knows?????

AASHTO R 35 – STANDARD PRACTICE FOR SUPERPAVE VOLUMETRIC MIX DESIGN

- 4. Using the table on the following page, what is the combined percent passing for the No. 4 sieve?
 - a. 53
 - b. 54
 - c. 55
 - d. 56
 - e. None of the above.

$$P = Aa + Bb Cc + \dots Nn$$

Where:

A, B, C ... N = Percent passing for individual products (expressed as whole numbers).

a, b, c, \dots n = Proportions of individual products used (expressed as decimals).

- 5. Using the table on the following page, what is the combined $G_{sb}(OD)$ (oven-dry bulk specific gravity) of the blend?
 - a. 2.655
 - b. 2.657
 - c. 2.659
 - d. 2.661
 - e. None of the above

$$G_{sb}(OD) = \frac{P_1 + P_2 + P_3 + \dots P_n}{\frac{P_1}{G_{sb}(OD)_1} + \frac{P_2}{G_{sb}(OD)_2} + \frac{P_3}{G_{sb}(OD)_3} + \dots \frac{P_n}{G_{sb}(OD)_n}}$$

Aggregate Blending Worksheet

Product	Percen	tage of	Products	s Used ([Decimal)					
Identification	Blend No. 1	a (1/2")	b (3/8")	c (1/4")	d (Fine)					
A (1/2")	0.23	0.23								
B (3/8")	0.22		0.22							
C (1/4")	0.17			0.17						
D (Fine)	0.38				0.38					
Total	1.00									
Grading for 1/2" (12.5 mm) Mix						Individual Product Identification and Gradations (Percent Passing)				
Sieve Size Comb. Individual Product Contributions				Sieve Size	A (1/2")	B (3/8")	C (1/4")	D (Fine)		
1"	100	23	22	17	38	1"	100	100	100	100
3/4"						3/4"	100	100	100	100
1/2"						1/2"	91	100	100	100
3/8"						3/8"	12	96	100	100
No. 4						No. 4	2	20	75	100
No. 8						No. 8	2	15	21	95
No. 16						No. 16	2	5	10	78
No. 30						No. 30	1	2	5	46
No. 50						No. 50	1	2	3	25
No. 100						No. 100	1	2	3	18
No. 200						No. 200	0.3	1.5	2.0	10.3
Combined Specific Gravity and Absorption Data						Individual Aggregate Specific Gravity and Absorption Data				
G _{sb} (OD)						G _{sb} (OD)	2.802	2.641	2.589	2.610
G _{sb} (SSD)						G _{sb} (SSD)	2.810	2.654	2.626	2.635
G _{sa}						G _{sa}	2.826	2.676	2.689	2.677
Absorption						Absorption	0.30	0.45	0.98	0.90
Additional Design Information for Calculation of Pbi										
Binder Specific Gravity G _b 1.022										
		Log S _n	(12.5)	1.0969						

SMD Sample Test 3 February 2008 6. Which of the following is required for calculation of the P_{bi} (initial trial binder content)?

- a. $G_{sb}(OD)$ and G_{sa}
- b. $G_{sb}(SSD)$ and G_{sa}
- c. Estimated G_{se}
- d. a&c
- e. b&c
- f. All of the above.

7. Given the following information, the VMA is . .

- a. 12.4%
- b. 17.5%
- c. 87.6%
- d. 82.5%
- e. None of the above.

$$VMA = 100 - \left(\frac{G_{mb} P_s}{G_{sb}}\right) \qquad V_a = 100 * \left[1 - \left(\frac{G_{mb}}{G_{mm}}\right)\right]$$

where:

$$G_{mm} = 2.479$$

$$G_{mb} = 2.335$$

$$P_s = 94.3\%$$

$$G_{\rm sb} = 2.668$$

8. Given the above information, the V_a is _____.

- a. 5.8%
- b. 5.9%
- c. 94.2%
- d. 94.3%
- e. None of the above.

9. Given the VMA calculated in question number 7 above, the VMA would be considered appropriate for a 1/2" (12.5mm) Superpave mix design.

- a. True
- b. False

- 10. During the optimum binder content selection phase of volumetric mix design, five binder contents are used.
 - a. True
 - b. False
- 11. Given the following, what is the %G_{mm(initial)design}? Does this meet the Superpave requirements where Design ESALs are 14 million (Yes/No)?
 - a. 88.1% -- Yes
 - b. 89.9% -- Yes
 - c. 88% -- No
 - d. 90% -- Yes
 - e. None of the above.

$$\%G_{\text{mminitial}} = 100 * \left(\frac{G_{\text{mb}}h_{\text{d}}}{G_{\text{mm}}h_{\text{i}}} \right)$$

$$\%G_{mm(initial)design} = \%G_{mm(initial)} - \Delta V_a$$

where:

 V_a at nearest lower binder content than that resulting in 4.0% = 5.8%

 $G_{mm} = 2.502$

 $G_{mb} = 2.467$

 $h_{\rm m} = 116.8 \; \rm mm$

 $h_i = 130.7 \text{ mm}$

- 12. Final selection of optimum design binder content is based on compliance with Table 3 ("Superpave HMA Design Requirements") as shown in the FOP for AASHTO R 35. For design ESALs of 7 million, the following meet the requirement.
 - a. True
 - b. False

Where:

%G_{mm} @ N_{inial}: 89.8 %G_{mm} @ N_{design}: 96.0 % G_{mm} @ N_{max}: 98.9 VFA: 68.1%

 $P_{0.075}/P_{be}$: 1.4%

AASHTO R 30 MIXTURE CONDITIONING OF HOT-MIX ASPHALT (HMA)

- 13. Which of the following statements regarding this FOP is correct?
 - a. Mixture conditioning procedures for volumetric design and mechanical property testing are the same except for the period of aging (2 hours vs. 4 hours).
 - b. Mixture conditioning according to R 30 simulates long-term aging of the mix.
 - c. Conditioning in the laboratory is not necessary prior to volumetric mixture testing of plant-produced HMA.
 - d. After mixture conditioning of gyratory compaction samples is completed, it is permissible to allow the sample to cool to room temperature temporarily before reheating to compaction temperature.
 - e. All of the above.
- 14. According to this FOP, which of the following statements is **incorrect**?
 - a. Prior to laboratory-mixing samples for volumetric testing it is required to first prepare, mix and discard a butter batch.
 - b. Mixture conditioning of samples for volumetric mixture design is conducted at mixing temperature for a period of 2 hours \pm 5 minutes.
 - c. Mixture conditioning for mechanical property testing is conducted at mixing temperature for a period of 4 hours \pm 5 minutes.
 - d. When performing mixture conditioning for mechanical property testing it is required to stir the samples every 60 ± 5 minutes.
 - e. All of the above.
- 15. When RAP (Reclaimed Asphalt Pavement) is used in volumetric mix design, it must be added to the aggregate for the period required to heat the aggregate to mixing temperature (usually 2 to 4 hours).
 - a. True
 - b. False

AASHTO T 312 – METHOD FOR PREPARING AND DETERMINING THE DENSITY OF HOT MIX ASPHALT (HMA) BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR

16.	The angle of gyration may refer to either the internal or external angle. The pressure applied during compaction must be within a specified range. The correct internal angle is
	; that of the external angle is; the pressure applied during compaction is
	a. 1.25±0.02° 1.16±0.02° 600±18 Pa.
	b. 1.16±0.02° 1.16±0.02° 600±16 kPa.
	c. 1.16±0.02° 1.25±0.02° 600±18 Pa.
	d. 1.16±0.02° 1.25±0.02° 600±16 kPa.
	e. None of the above.
17.	This FOP covers preparing gyratory-compacted specimens that may be used for field control of HMA production processes.
	a. True
	b. False
8.	After filling the mold, leveling the HMA and installing the paper disc, what next must be done?

AASHTO T 283 – RESISTANCE OF COMPACTED BITUMINOUS MIXTURES TO MOISTURE INDUCED DAMAGE

- 19. Test specimens for T 283 must be compacted to what air void content?
 - a. Between 5 and 7 percent.
 - b. Between 6 and 8 percent.
 - c. Between 6 and 7 percent.
 - d. Between 6.5 and 7.5 percent.
 - e. None of the above.
- 20. After saturation it is discovered that the degree of saturation is 65%. What must be done? If the degree of saturation is 81%, what must be done?
 - a. For saturation of 65% it is permissible to repeat the saturation process using more vacuum and/or time. For saturation of 81% it is permissible to dry the specimen sufficiently to bring the saturation to within the acceptable 70 to 80% range provided that drying is performed at a temperature of 125 ± 5 °F or lower.
 - b. In both cases, the specimen(s) must be discarded because it is never permissible to make further adjustment to specimens outside the range of acceptable saturation.
 - c. For saturation of 65% it is permissible to repeat the saturation process using more vacuum and/or time. For saturation of 81% the specimen is damaged and be discarded.
 - d. None of the above.
- 21. Given the following, calculate the TSR. Does TSR meet Superpave requirements?

$$TSR = \frac{S_2}{S_1}$$

where:

S1 = unconditioned subset - 133 psi indirect tensile strength

S2 = conditioned subset - 97 psi indirect tensile strength

AASHTO T 324 – HAMBURG WHEEL-TRACK TESTING OF COMPACTED HOT-MIX ASPHALT (HMA)

- 22. According to this FOP, test specimens for T 283 must be compacted to what air void content?
 - a. Between 5 and 7 percent.
 - b. Between 6 and 8 percent.
 - c. Between 6 and 7 percent.
 - d. Between 6.5 and 7.5 percent.
 - e. None of the above.
- 23. Which of the following specimen sizes are appropriate for testing according to this FOP?
 - a. Laboratory-compacted slab specimens of 12.5 inch length and 10.25 inch width having thickness of 1.5 inch to 4 inch.
 - b. Superpave gyratory compactor specimens having thickness (height) of 1.5 inch to 4 inch.
 - c. Wet-cut compacted specimens from HMA pavements. Slabs shall be of approximately 12.5 inch length and 10.25 inch width and thickness of 1.5 inch to 4 inch. Cores shall be 10 inch diameter.
 - d. All of the above.

Describe ho and strippin	ow the SIP (stripping slope.	g inflection poir	nt) is determined	by using the creep

SMD Sample Test 9 February 2008